Towards Cross-Modality Medical Image Segmentation with Online Mutual Knowledge Distillation
نویسندگان
چکیده
منابع مشابه
Towards Direct Medical Image Analysis without Segmentation
Direct methods have recently emerged as an effective and efficient tool in automated medical image analysis and become a trend to solve diverse challenging tasks in clinical practise. Compared to traditional methods, direct methods are of much more clinical significance by straightly targeting to the final clinical goal rather than relying on any intermediate steps. These intermediate steps, e....
متن کاملMedical Image Segmentation for Anatomical Knowledge Extraction
Computed Tomography-Angiography (CTA) images of the abdomen, followed by precise segmentation and subsequent computation of shape based features of liver play an important role in hepatic surgery, patient/donor diagnosis during liver transplantation and at various treatment stages. Nevertheless, the issues like intensity similarity and Partial Volume Effect (PVE) between the neighboring organs;...
متن کاملMedical Image Segmentation Based on Mutual Information Maximization
In this paper we propose a two-step mutual informationbased algorithm for medical image segmentation. In the first step, the image is structured into homogeneous regions, by maximizing the mutual information gain of the channel going from the histogram bins to the regions of the partitioned image. In the second step, the intensity bins of the histogram are clustered by minimizing the mutual inf...
متن کاملTowards Real-Time Multi-Modality 3-D Medical Image Registration
Intensity value-based registration is a widely used technique for the spatial alignment of medical images. Generally, the registration transformation is determined by iteratively optimizing a similarity measure calculated from the grey values of both images. However, such algorithms may have high computational costs, especially in the case of multi-modality registration, which makes their integ...
متن کاملMRI Image-to-Image Translation for Cross-Modality Image Registration and Segmentation
We develop a novel cross-modality generation framework that learns to generate predicted modalities from given modalities in MR images without real acquisition. Our proposed method performs image-to-image translation by means of a deep learning model that leverages conditional generative adversarial networks (cGANs). Our framework jointly exploits the low-level features (pixel-wise information)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i01.5421